SiPM Measurements: Position and Gain

Hannah Hamilton

Setup

- This setup was contained in a lighttight box.
- The silicone gel used was Dow Corning 3145 RTV (shown below)
- SiPM on other end added later

Position Results

What we measured	Why we measured it	Expected results	Observed Results	Analysis
x, y, and z positions vs. signal voltages	To find the position that provides both appropriate saturation levels, as well as higher signal voltages.	 Region where dV/ dz was near 0. Expected to fall around the width of the SiPM. 	Expected behavior seen	 Silicone prevented some light from escaping Saw regions of pixels saturate before entire SiPM

Plot output at different LED intensities (shown on next slide).

Gain Results

What we measured	Why we measured it	Expected results	Observed Results	Analysis
The gain ratio between an attenuated SiPM and non-attenuated SiPM	SIPMS WITH	 Linear region with factor of 4 difference. 	Saw factor of 2 differenceFairly linear	 Possible inadequate attenuation Possible incorrect single pixel calibration

HCal Lab: Trigger and Asymmetry Studies

Reuben Byrd and Cecily Towell

Trigger Study: 3 Thresholds

- Goal: minimize noise/keep cosmic muons
- Expected rate: ~10hz
- HBD FEM trigger has 3 parameters
- Each of the 3 different parameters were varied to determine the optimal trigger for SiPM:
 - 1. Total number of pixels above threshold (10-80)
 - 2. Total number of the 8 SiPMs above threshold (2-4)
 - 3. Threshold settings (1-6)

Results

- Many short runs taken with different parameter settings
- Two 8 hour runs with:

40:3:3

0 30:4:2

 Edouard used this study to help select the current trigger settings

Parameters:	1	2	3	Rate (Hz)	Time (seconds)	1	: Total number of Hits (10-80)
	15	4	2	22.7	10	2	: Number of SiPM > threshold (2-4)
	15	3	2	104.5	10	3	: MIP threshold (1-6)
	15	2	2	1071.7	10		
	10	4	2	35	10		
	20	4	2	21.3	10	V	Vanting ~10hz trigger
	25	4	2	17.1	10		variang Tonz anggor
	30	4	2	14.3	10		
	35	4	2	13.6	10		
	40	4	2	19.8/24/21.6	10		
	45	4	2	13.5	10		
	50	4	2	13.5	10		
	55	4	2	11	10		
	60	4	2	11.3	10		
	65	4	2	8.6	10		
	70	4	2	8.4	10		
	75	4	2	10.1	10		
	80	4	2	9.6	10		
	15	4	1	46.5	10		
	15	4	3	17.7	10		
	15	4	4	15.3	10		
	15	4	5	15.4	10		
	15	4	6	11.6	10		
	80	4	6	12.3	10		
	30	3	3	17.8	10		
	35	3	3	16.6	10		
	40	3	3	14.1	10		
	45	3	3	11.9	10	L'4-	
				,	# of		
LONG RUNS	30	4	2	17.2	26995	463202	
	40	3	3	14.9	29015	431811	

Asymmetry Study

- <u>Purpose:</u> position resolution study.
- Asymmetry: ratio of the difference of the signal from the two ends of a fiber.
- LED used to provide signal

Tiles and Template

Asymmetry measurements on 4 tiles

 We made a template for the LED position on the tiles so that our studies were uniform.

Asymmetry Plots

Next Steps

 Starting asymmetry measurements on gradient tiles

